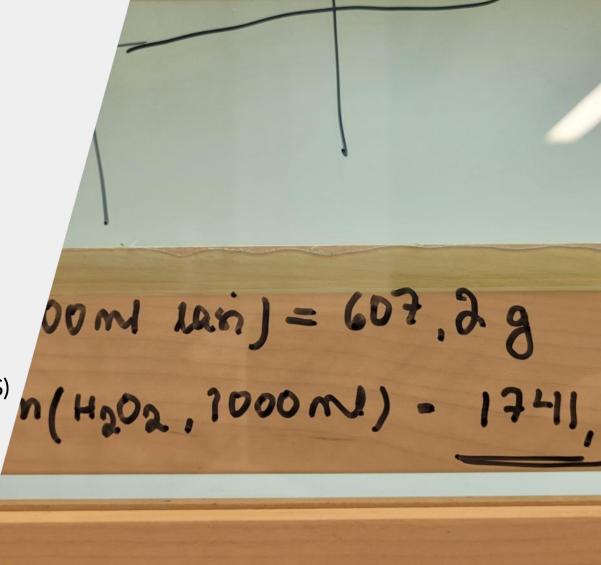


Contents

- KEMS3040 Measurement Uncertainty and Validation of Analytical Methods 4 ECTS
- Course is based on the book Miller, J.N. & Miller, J.C.,
 Statistics and Chemometrics for Analytical Chemistry,
 Prentice Hall.
- Error types and their sources
- Statistics of repeated measurements
- Significance tests
- The quality of analytical measurements
- Calibration methods in instrumental analysis


Intended for 4- or 5-year students

First lectures and then exercises (using Microsoft Excel)

 The same calculations are practiced in advanced laboratory works (10-18 ECTS)

The course can include the written exercise (2-4 ECTS)

Course is scheduled just before Masters thesis

Statistics of repeated measurements

- Mean and standard deviation
- Confidence limits of the mean
- Presentation of results (the accuracy with which the result is informed)

 14.784 mg L^{-1} $14.784 \pm 0.167 \text{ mg L}^{-1}$ $14.8 \pm 0.2 \text{ mg L}^{-1}$

Significance tests

- Probabably the most important part of the course
 - Comparison of the experimental mean with the certified value
 - Comparison of two experimental mean
 - Paired t-test
 - 1. Zn concentrations in carbide blade raw material was analyzed using FAAS (standard method) and ICP-OES (new method).

Is the difference between the methods significant?

Zn is a metal that weakens carbide blades, the concentration of which should not exceed the 0.025 %. Is the copper concentration at the acceptable level?

$$t = \frac{|\bar{x} - \mu|}{s / \sqrt{n}}$$

$$|t| = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$|t| = \frac{\overline{d}\sqrt{n}}{s_d}$$

The quality of analytical measurements

- Sampling
- Quality control methods
- standard reference materials
- internal quality control standards
- recovery tests
- Shewhart charts
- Proficiency tests
- Uncertainty
 - MUKIT teached by Teemu Näykki
- Other lecturer from the industry

Calibration

- Principles of trace element analysis
- Preparation of calibration standard solutions
- Linear regression and correlation coefficient
- LOD and LOQ

